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Calculations of properties of screened He-like systems using correlated wave functions
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The purpose of the present study is twofold. First, the techniques of correlated wave functions for two-
electron systems have been extended to obtain results forP andD states in a screening environment, and in
particular for Debye screening. In these calculations, the satisfaction of both the quantum virial theorem and a
related sum rule has been enforced and found to provide a high degree of stability of the solutions. Second, in
order to facilitate the general use of correlated wave functions in combination with sum rule stability criteria,
a rather systematic computational approach to this notoriously cumbersome method has been developed and
thoroughly discussed here. Accurate calculations for few-electron systems are of interest to plasma diagnostics;
in particular, when inaccuracies in binding energies are drastically magnified as they occur in exponents of
Boltzmann factors.
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I. INTRODUCTION

Prompted by the renewed interest in experimental stu
of highly charged ions, atomic systems with few electro
have again become the focus of both theoretical and exp
mental investigations. Helium-like systems, in particular,
once more centerstage in a variety of different resea
projects. Parallel to this development in ion physics run
complementary activity in the study of atomic processes
plasmas. Here too multiply ionized few-electron systems
of interest because the relative simplicity of their spec
renders them useful for plasma diagnostics. Furtherm
negative ions—predominantly the negative hydrogen i
serve diagnostic purposes in astrophysical plasmas be
being an important agents of opacity.

The focus of much of modern atomic theory is on electr
correlation in various systems and processes. This intere
shared by new developments in the physics of highly ioni
systems, including clusters, and by studies of atomic syst
in plasma environments. Two-electron systems, in particu
play an important role in this research because of the rela
ease with which correlation effects can be identified and
culated. New aspects such as the need to include relativ
effects in highly charged ions, for instance, or the direct
clusion of screening potentials into atomic calculations@1,2#
call for improved theoretical approaches. Correlated w
functions have the potential for such improvements.

The Debye-Hu¨ckel theory—although first formulated i
the framework of the theory of electrolyte solutions@3#—is
being widely used for the modeling of plasma screening@4#
because it allows for an analytic treatment of the relev
integrals. The main shortcoming of the Debye model is
limitation to static screening.

The present research originated from previous work
include realistic, time-dependent screening potentials
atomic calculationsfrom the beginningand, by doing so,
calculate line broadening and the lowering of the continu
threshold simultaneously and on the same footing. While
time-dependent aspect is not our focus here, the need
screened wave functions of non-zero angular momenta
helium-like ions stimulated the present study which bui
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on the landmark article by Calais and Lo¨wdin @5# in which
the authors give an analytic expression for nested triple in
grals of the type ‘‘exponential function times integer pow
ers’’ in all three arguments. Correlated wavefunctions ha
been applied to screenedS-states@12# and highly accurate
results for correlatedP-states have been given by Thakk
and Smith@6# though not for screened interactions.

II. PERIMETRIC COORDINATES

Correlated wave functions that depend explicitly on t
interelectronic distancer 12 are not commonly used in calcu
lations of the correlation energy of two-particle systems,
cept in high-precision calculations for small atomic system
Early two-electron approaches of this type are given in
landmark publications by Hylleraas@7# and Pekeris@8#. Ap-
plications to three-electron systems are much more re
@9#. For standard product wave functions, the interelectro
distancer 12 enters the integrands only via the electronic
pulsion term 1/r 12 in the Hamiltonian and can be handled b
the Legendre expansion. The calculation of the integrals w
wave functions containing a correlation factor, i.e., a fun
tion of r 12, is a more difficult task because rather comp
cated functions ofr 12 may occur and becauser 12 becomes
now a dynamical variable. The present work is mainly
tended to provide tools to simplify the use of correlated wa
functions.

The highlights of Calais and Lo¨wdin’s systematic study
@5# of integrals containing functions of the radial coordinat
r 1 ,r 2 as well as of the relative distancer 12 as one of the
dynamic integration variables are briefly reviewed here
completeness. We start with integrals of the type

E f ~r 1!g~r 2!h~r 12!dv1dv2 , ~1!

where f and g are spherically symmetric, and we treat th
general case later@Eq. ~8!#. Then we write
©2001 The American Physical Society08-1
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E f ~r 1!g~r 2!h~r 12!dv1dv2

5E f ~r 1!dv1E g~r 2!h~r 12!dv2

5E f ~r 1!dv1

2p

r 1
E

0

`

g~r 2!r 2dr2E
ur 12r 2u

r 11r 2
h~r 12!dr12

58p2E
0

`

f ~r 1!r 1dr1E
0

`

g~r 2!r 2dr2

3E
ur 12r 2u

r 11r 2
h~r 12!r 12dr12. ~2!

The next step is the transformation of the integrands to p
metric coordinates defined by the following relations:

r52r 11r 21r 12, r 151/4~2s1t!,

s5r 12r 21r 12 or r 251/4~2r1t!,

t52~r 11r 22r 12!, r 1251/2~r1s!, ~3!

dr1dr2dr1251/8drdsdt. ~4!

With the following choice of functions:

f ~r !5e2Ar/r , g~r !5e2Br/r , h~r !5e2Cr/r , ~5!

the basic integral Eq.~1! is easily evaluated in the new co
ordinates because the limits of the three integrals bec
independent of each other. Compared to the direct calc
tion of the integrals this substitution brings a considera
simplification in that all integral limits extend from zero t
infinity. The basic integral then becomes

8p2E
0

`

e2Ar1dr1E
0

`

e2Br2dr2E
ur12r2u

r 11r 2
e2Cr12dr12

5p2E
0

`

e21/2r~B1C!drE
0

`

e21/2s~A1C!ds

3E
0

`

e21/4t~A1B!dt

5
16p2

~A1B!~A1C!~B1C!
. ~6!

More general integrals, containing various integer powers
r 1 , r 2 , and r 12 can be obtained from this basic integral b
taking appropriate derivatives with respect to the parame
A, B, andC.

The general analytic result for integer power functions
r 1 , r 2 , andr 12 is given by
01640
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@K,L,M #[E
0

`

dr1r 1
Ke2Ar1E

0

`

dr2r 2
Le2Br2

3E
ur12r2u

r 11r 2
dr12r 12

Me2Cr12

52K!L! M ! (
p50

K

(
q50

L

(
r 50

M

3
~p1q!!

q! p!

~K2p1r !!

r ! ~K2p!!

~L2q1M2r !!

~M2r !! ~L2q!!

3~A1B!2~p1q11!~A1C!2~K112p1r !

3~B1C!2~L112q1M2r !. ~7!

Computationally, this formula—whenever it can b
applied—is advantageous over, for instance, the Ga
Laguerre quadrature approach that has been presented e
@10# by the present authors. In more general cases of inte
however, such a numerical formula can be useful by prov
ing substantial convenience for programming. Furthermo
it can also be applied when the integrands contain functi
which do not allow for analytic results. In these cases
numerical quadrature will no longer be exact but still of
high degree of accuracy.

Paraphrasing Calais and Lo¨wdin @5# further, we turn now
to the general atomic integral of the type

E E f ~r 1!Ylm~V1!h~r 12!g~r 2!Ylm~V2!dv1dv2

52p~21!mdm,2mdl,lQl~z!, ~8!

where a functionQl(z) has been defined as

Ql~z!5E
0

`

f ~r 1!r 1
2dr1E

0

`

g~r 2!r 2
2dr2E

0

p

h~r 12!

3Pl~cosu12!sinu12du12, ~9!

which, different from Calais and Lo¨wdin, has been estab
lished with an indexz to distinguish between differen
choices for the functionsf, g, andh as they are used in th
tables of the later sections.

Using the notation for more general integrands

~K,L,M !5E
0

`

f ~r 1!r 1
Kdr1E

0

`

g~r 2!r 2
Ldr2

3E
ur 12r 2u

r 11r 2
h~r 12!r 12

Mdr12, ~10!

the first three of the quantitiesQl(z) can be expressed as

Q0~z!5~1,1,1!, ~11!

Q1~z!5 1
2 $~2,0,1!1~0,2,1!2~0,0,3!%, ~12!

Q2~z!5 3
8 $~3,21,1!1~21,3,1!1~21,21,5!1 2

3 ~1,1,1!

22~1,21,3!22~21,1,3!%. ~13!
8-2
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@Note: The factor23 in front of the fourth term ofQ2(z) has
all the time been missing in Calais and Lo¨wdin’s original
work @5#.#

The angular functions in Eq.~9! are transformed into in-
teger powers of the radial variables using the law of cosi

cosu125
r 1

21r 2
22r 12

2

2r 1r 2
, ~14!

the repeated application of which leads to the notoriou
tedious expressions to calculate. The main goal of
present paper is to provide a set of tables with the help
which this procedure can be systematized to some degr

III. THEORETICAL FOUNDATIONS

The nonrelativistic Hamiltonian for a two-electron atom
system with both electron-electron and electron-nucleus
teractions screened is given by

Ĥ52
1

2
~¹1

21¹2
2!2

Z

r 1
e2r 1 /D2

Z

r 2
e2r 2 /D1

1

r 12
e2r 12 /D8.

~15!

The denominatorD8 in the exponent of the last term facil
tates the possibility of a different screening of the electr
electron interaction if the physical plasma model warra
this, although this option has not been used in the pre
study.

The eigenfunctionsuC& are defined in a state spac
spanned by a set of correlated and properly symmetr
functionsuabc& as

uC&5(
abc

f abcuabc&. ~16!

As an example, the following functional form has been ch
sen forP-state calculations:

uabc&5~r 1e2ar12br2 cosu11Spnr 2e2ar22br1 cosu2!e2cr12,
~17!

while

uabc&5@r 1
2e2ar12br2P2~cosu1!

1Spnr 2
2e2ar22br1P2~cosu2!#e2cr12 ~18!

is the choice forD-state calculations, where the sign para
eterSpn51 indicates singlet states and21 triplet states.

Since the set of correlated basis functionsuabc& is neither
orthogonal nor normalized, the eigenvalue problem to so
is given by

(
abc

f abc~Ha8b8c8,abc2ESa8b8c8,abc!50 ~19!

~for all combinations a8b8c8!, where Sa8b8c8,abc

5^a8b8c8uabc& andHa8b8c8,abc5^a8b8c8uĤuabc&.
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IV. P-STATE CALCULATIONS

As computations ofSstates of screened two-electron sy
tems with correlated wave functions of the same type h
been reported relatively recently@2#, the present paper wil
focus on higher angular momentum states~P andD!.

The most basic integrals to be calculated are the elem
of the overlap matrix. With the use of Eqs.~8!–~13!, they are
easily obtained~see Appendix A!,

Sa8b8c8,abc5
8p2

3
@Q0~1!1Q0~4!#

1Spn

8p2

3
@Q1~2!1Q1~3!#. ~20!

Table I represents different choices of the functionsf (x),
g(x), andh(x) in Ql(z).

The calculation of the elements of the Hamiltonian mat
for screened interactions, Eq.~15!, requires more effort. The
three potential-energy terms are readily obtained by a sl
modification of Table I, replacing the functionf (x) by
f (x)exp(2x/D)/x,

K a8b8c8U2 Z

r 1
e2r 1 /DUabcL

52Z
8p2

3
@Q0~1!1Q0~4!#

2SpnZ
8p2

3
@Q1~2!1Q1~3!#. ~21!

Similarly, the other parts can be calculated by replac
g(x) with g(x)exp(2x/D)/x and h(x) with h(x)exp
(2x/D8)/x in the original Table I, respectively.

TABLE II. Table I values modified for ^a8b8c8u
2(Z/r 2)e2r 2 /Duabc&.

z f (x) new g(x) h(x)

1 x2e2(a1a8)x 1

x
e2@b1b81~1/D !#x e2(c1c8)x

2 xe2(a1b8)x e2@a81b1(1/D)#x e2(c1c8)x

3 xe2(a81b)x e2@a1b81(1/D)#x e2(c1c8)x

4 e2(b1b8)x xe2@a1a81(1/D)#x e2(c1c8)x

TABLE I. Functions used in Eq.~20!.

z f (x) g(x) h(x)

1 x2e2(a1a8)x e2(b1b8)x e2(c1c8)x

2 xe2(a1b8)x xe2(a81b)x e2(c1c8)x

3 xe2(a81b)x xe2(a1b8)x e2(c1c8)x

4 e2(b1b8)x x2e2(a1a8)x e2(c1c8)x
8-3
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As an example of such a modification of the origin
table, we turn to the matrix element^a8b8c8u
2(Z/r 2)e2r 2 /Duabc&, and show the modified table, Tab
II.

The final expression to compute is given by

K a8b8c8U2 Z

r 2
e2r 2 /DUabcL

52Z
8p2

3
@Q0~1!1Q0~4!#

2SpnZ
8p2

3
@Q1~2!1Q1~3!#. ~22!

To evaluateQl(z), the functionsf (x), g(x), andh(x) now
have to be chosen from thezth row of the modified table.

The calculation of the kinetic energy elements of t
Hamiltonian matrix, variable transformation leads to a mo
involved expression,

^a8b8c8u2 1
2 ~¹1

21¹2
2!uabc&

52
4p2

3 F (
z51

8

Q0~z!1Q1~9!1 (
z510

17

Q0~z!1Q1~18!G
2

4p2

3
SpnF (

z519

26

Q1~z!1Q0~27!

1 (
z528

35

Q1~z!1Q0~36!G , ~23!

where the three functions are defined in Table III. The tab
for the functions used to calculate the overlap and Ham
tonian matrices as well as Eqs.~8!–~13! provide the basis for
a systematic way of computing the rest of the integr
needed to describeP states.

V. D-STATE CALCULATIONS

The elements of the overlap matrix are

Sa8b8c8,abc5
8p2

5
@Q0~1!1Q0~4!#

1Spn

8p2

5
@Q2~2!1Q2~3!#. ~24!

Here the functionsf (x), g(x), andh(x) in Eqs.~8!–~13!
are defined in Table IV.

Similar to calculations ofP states, we get

K a8b8c8U2 Z

r 1
e2r 1 /DUabcL

52Z
8p2

5
@Q0~1!1Q0~4!#

2SpnZ
8p2

5
@Q2~2!1Q2~3!#, ~25!
01640
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where the three functions are almost the same as thos
Table IV, except that the functionf (x) is replaced by
f (x)exp(2x/D)/x,

TABLE III. Three functions used in Eq.~23!.

z f (x)e2(a1a8)x g(x)e2(b1b8)x h(x)e2(c1c8)x

1
x2Sa821b821c822

4a8

x D 1 1

2 22b8x2 1/x 1
3 2c8x2(62a8x) 1 1/x
4 b8c8x2 x 1/x
5 2b8c8x4 1/x 1/x
6 2a8c8x x2 1/x
7 b8c8x2 1/x x
8 a8c8x 1 x
9 2c8x x 1/x

z g(x)e2(a1a8)x f (x)e2(b1b8)x h(x)e2(c1c8)x

10
x2Sa821b821c822

4a8

x D 1 1

11 22b8x2 1/x 1
12 2c8x2(62a8x) 1 1/x
13 b8c8x2 x 1/x
14 2b8c8x4 1/x 1/x
15 2a8c8x x2 1/x
16 b8c8x2 1/x x
17 a8c8x 1 x
18 2c8x x 1/x

z f (x)e2(a81b)x g(x)e2(a1b8)x h(x)e2(c1c8)x

19
xSa821b8212c822

4a8

x D x 1

20 22b8x 1 1
21 2c8x(62a8x) x 1/x
22 b8c8x x2 1/x
23 2b8c8x3 1 1/x
24 2a8c8 x3 1/x
24 b8c8x 1 x
26 a8c8 x x
27 2c8 x2 1/x

z g(x)e2(a81b)x f (x)e2(a1b8)x h(x)e2(c1c8)x

28
xSa821b8212c22

4a8

x D x 1

29 22b8x 1 1
30 2c8x(62a8x) x 1/x
31 b8c8x x2 1/x
32 2b8c8x3 1 1/x
33 2a8c8 x3 1/x
34 b8c8x 1 x
35 a8c8 x x
36 2c8 x2 1/x
8-4
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K a8b8c8U2 Z

r 2
e2r 2 /DUabcL

52Z
8p2

5
@Q0~1!1Q0~4!#

2SpnZ
8p2

5
@Q2~2!1Q2~3!#, ~26!

where the three functions are almost the same as thos
Table IV, except that the functiong(x) is replaced by
g(x)exp(2x/D)/x,

K a8b8c8U 1

r 12
e2r 12 /D8UabcL

5
8p2

5
@Q0~1!1Q0~4!#1Spn

8p2

5
@Q1~2!1Q1~3!#

~27!

with the functionh(x) replaced byh(x)exp(2x/D8)/x,

^a8b8c8u2 1
2 ~¹1

21¹2
2!uabc&

52
4p2

5 F (
z51

8

Q0~z!1Q1~9!1 (
z510

17

Q0~z!1Q1~18!G
2

4p2

5
SpnF (

z519

26

Q2~z!1Q1~27!1 (
z528

35

Q2~z!

1Q1~36!G , ~28!

where the three functions are defined in Table V.

VI. SUM RULES

Sum rules have been introduced as stationarity condit
and goodness criteria into resonance calculations based o
expansion of dilatationally transformed Hamiltonia
@12,13#. This technique is also called complex scaling a
serves the purpose of determining complex variational w
functions when the usual criterion of energy minimization
not applicable. In the context of the present work whi
deals only with bound states and real-valued eigenvalues
use of sum rules is motivated rather by the need of optim
ing a large number of exponents in the correlated basis fu
tions. This nonlinear search is an addition to the usual lin
optimization by the Ritz variational procedure and provid
an alternative for the optimization of variational wave fun

TABLE IV. Functions used in Eq.~24!.

z f (x) g(x) h(x)

1 x4e2(a1a8)x e2(b1b8)x e2(c1c8)x

2 x2e2(a1b8)x x2e2(a81b)x e2(c1c8)x

3 x2e2(a81b)x x2e2(a1b8)x e2(c1c8)x

4 e2(b1b8)x x4e2(a1a8)x e2(c1c8)x
01640
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tions for excited states. In the present work, the numbe
nonlinear parameters is at least 56. This is prohibitively la
for a full optimization. Instead, we scale three groups co
sisting of six parameters each independently. From these

TABLE V. Three functions used in Eq.~28!.

z f (x)e2(a1a8)x g(x)e2(b1b8)x h(x)e2(c1c8)x

1
x4Sa821b8212c822

6a8

x D 1 1

2 22b8x4 1/x 1
3 2c8x4(82a8x) 1 1/x
4 b8c8x4 x 1/x
5 2b8c8x6 1/x 1/x
6 2a8c8x3 x2 1/x
7 b8c8x4 1/x x
8 a8c8x3 1 x
9 4c8x3 x 1/x

z g(x)e2(a1a8)x f (x)e2(b1b8)x h(x)e2(c1c8)x

10
x4Sa821b8212c822

6a8

x D 1 1

11 22b8x4 1/x 1
12 2c8x4(82a8x) 1 1/x
13 b8c8x4 x 1/x
14 2b8c8x6 1/x 1/x
15 2a8c8x3 x2 1/x
16 b8c8x4 1/x x
17 a8c8x3 1 x
18 4c8x3 x 1/x

z f (x)e2(a81b)x g(x)e2(a1b8)x h(x)e2(c1c8)x

19
x2Sa821b8212c822

6a8

x D x2 1

20 22b8x2 x 1
21 2c8x2(82a8x) x2 1/x
22 b8c8x2 x3 1/x
23 2b8c8x4 x 1/x
24 2a8c8x x4 1/x
25 b8c8x2 x x
26 a8c8x x2 x
27 4c8x x3 1/x

z g(x)e2(a81b)x f (x)e2(a1b8)x h(x)e2(c1c8)x

28
x2Sa821b8212c822

6a8

x D x2 1

29 22b8x2 x 1
30 2c8x2(82a8x) x2 1/x
31 b8c8x2 x3 1/x
32 2b8c8x4 x 1/x
33 2a8c8x x4 1/x
34 b8c8x2 x x
35 a8c8x x2 x
36 4c8x x3 1/x
8-5
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form the required combinations.
The simultaneous satisfaction of the sum rules here, a

the complex case, enforces relevant properties that a m
ingful wave function should exhibit. The first-order term
the energy expansion~not really a sum rule! is the quantum
virial theorem, while the second-order term has the typi
form of the sum occurring in perturbation theory of seco
order, and so on. The sum rule of the second order prov
a stability condition.

We are studying He-like systems that experience scre
ing modeled by Debye potentials

V52
Z

r 1
e2r 1 /D2

Z

r 2
e2r 2 /D1

1

r 12
e2r 12 /D8. ~29!

EigenfunctionsuC& are assumed in the form given in Eq.~16!
with the correlated basis functions forP states as given in
Eq. ~17!.

The satisfaction of the sum rules is expressed by the v
ishing of the coefficients of the perturbation expansion. E
plicitly, the first two conditions are the virial theorem

K CU2T1 i S ]V

]u D
u50

UCL 50, ~30!

and the sum rule of the second order

2Tnn2
1

2 S ]2V

]u2 D
u50

2 (
bÞn

K bU2T1 i S ]V

]u D
u50

UnL 2

Eb2En
50,

~31!

where

S ]V

]u D
u50

5 i FZe2r 1 /D

r 1
1

Ze2r 2 /D

r 2
2

e2r 12 /D8

r 12
1

Ze2r 1 /D

D

1
Ze2r 2 /D

D
2

e2r 12 /D8

D8
G ~32!

and

S ]2V

]u2 D
u50

5F2Ze2r 1 /D

D
1

2Ze2r 2 /D

D
2

2e2r 12 /D8

D8
G

1FZe2r 1 /D

r 1
1

Ze2r 2 /D

r 2
2

e2r 12 /D8

r 12
G

1FZr1e2r 1 /D

D2 1
Zr2e2r 2 /D

D2 2
r 12e

2r 12 /D8

D82 G .

~33!

VII. NUMERICAL RESULTS

For a general two-electron atomic system describ
by the Hamiltonian

Ĥ5T̂11T̂21V~r 1!1V~r 2!1W~r 12!, ~34!
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the quantum virial theorem~see, e.g., Ref.@11#, p. 78! is
given as

^@Ĥ,F̂#2&50 ~35!

with

F̂5
\

i
~r 1W •¹11r 2W •¹2!. ~36!

Thus the application to the screened system correspondin
Eq. ~15! leads to the virial theorem of the form

2^T̂11T̂2&52 K S 11
r 1

D DV~r 1!1S 11
r 2

D DV~r 2!

1S 11
r 12

D8DW~r 12!L . ~37!

Representative numerical results with wave functions of
terms are summarized in the following tables.Sa , Sb , and
Sc are the dimensionless factors by which the constantsa, b,
andc in the wave functions of Eqs.~17! and~18! have been
scaled, respectively.

Note that the Debye screening potential converges tow
the Coulomb potential in the limit of weak screening, i.
very large values ofD. Tables VI~a! and VI~b! show that the
numerical results reflect this fact well. For the lowestP
states, our results compare well to highly accurate calc
tions by Thakkar and Vedene@4# ~their values are
22.133 164 a.u. for the triplet and22.123 843 a.u. for the
singletP states, respectively! as well as to experimental re
sults @14# containing, naturally, all relativistic effects whic
are not included in the theoretical values. In the limit
strong screening, our results indicate that the energy leve
21P and 23P tend to become closer. This is a reasona
result considering that with decreasing values ofD the
atomic system expands spatially@2#, i.e., the two electrons
stay further apart on the average.~See Table VII! Sa , Sb ,
andSc are the dimensionless factors by which the consta
a, b, andc in the wave functions of Eqs.~17! and~18! have
been scaled, respectively.

TABLE VI. ~a! Triplet P states and~b! singletP states.

D
~a.u.!

E1
expt

~a.u.!
E1

theor

~a.u.! Sa Sb Sc

~a!

23106 22.133 330 22.133 083 1.11 1.665 5.03
200 22.118 159 1.11 1.665 5.03
20 21.990 202 1.11 1.665 4.83
2 21.158 562 1.02 1.52 4.84

~b!

23106 22.124 002 22.123 531 0.90 1.431 5.22
200 22.108 613 0.90 1.431 5.22
20 21.981 216 0.91 1.447 5.215
2 21.157 886 1.02 1.622 5.207
8-6
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Enforcing the satisfaction of the virial theorem for an e
cited state provides an optimization criterion for the adju
ment of the nonlinear parameters~see Sec. VIII!. This is
shown in Table VIII, wherek indicates the particular stat
chosen for optimization. Note that only thekth state is opti-
mized but not the lower states.

Again, Sa , Sb , and Sc are the dimensionless factors b
which the constantsa, b, andc in the wave functions of Eqs
~17! and ~18! have been scaled, respectively.

VIII. AN EXAMPLE FOR THE USE OF THE TABLES

In this section we demonstrate via an example how
moderately complicated integral can be calculated using
tables presented above. Following this scheme, the comp
tion of a large variety of integrals with various powers ofr 1 ,
r 2 , and r 12, as well as with different exponents, can
significantly simplified.

We chose the integral^C8u(Zr1e2r 1 /D/D2)uC& which is
one of the integrals necessary for the evaluation of the s
rules. First we notice that, aside from a constant factorZ/D2,
the integrand can be obtained by multiplying the integrand
the overlap matrix byr 1e2r 1 /D. Therefore Table I with some
modifications can be used for the calculation of this parti
lar integral.

Using Eqs.~8!–~13! we obtain

TABLE VII. ~a! Triplet D states and~b! singletD states.

D
~a.u.!

E1
expt

~a.u.!
E1

theor

~a.u.! Sa Sb Sc

~a!

23106 22.055 808 22.055 432 1.0 2.0 3.831
200 22.040 578 1.0 2.0 3.830
50 21.997 669 1.0 2.0 3.829
20 21.918 472 1.0 2.0 3.805
10 21.804 013 1.0 2.0 3.688

~b!

23106 22.055 793 22.055 418 1.0 2.0 3.835
200 22.040 566 1.0 2.0 3.835
50 21.997 650 1.0 2.0 3.830
20 21.918 423 1.0 2.0 3.796
10 21.803 940 1.0 2.0 3.681
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8p2

3
@Q0~1!1Q0~4!

1SpnQ1~2!1SpnQ1~3!#, ~38!

whereg(x) andh(x) are the same as those in Table I, wh
f (x) is modified to account for the extra termx exp(2x/D).
Table IX represents such modifications, and

f new~x!5 f ~x!xe2x/D. ~39!

To evaluateQ0(1) @see Eq.~11!#, functions f (x), g(x),
andh(x) from the first row are chosen. Since the first fun
tion has now three extra powers ofx ~i.e., of r 1! without
changes in the powers ofr 2 or r 12, the integral~1, 1, 1! then
becomes@4, 1, 1# with A5a1a811/D, B5b1b8, andC
5c1c8. The termQ0(4) is computed similarly by picking
functions from the fourth row. In this case, the integral~1, 1,
1! is modified into @2, 3, 1# with A5b1b811/D, B5a
1a8, andC5c1c8. To evaluateQ1(2) @see Eq.~12!# three
different integrals have to be evaluated using the functi
from the second row. Integral~2, 0, 1! becomes@4, 1, 1#,
integral~0, 2, 1! is transformed into@2, 3, 1#, and integral~0,
0, 3! changes to@2, 1, 3#. All three integrals have the expo
nential coefficientsA5a1b811/D, B5a81b, and C5c
1c8. The same approach is used to evaluateQ1(3), choos-
ing functionsf (x), g(x), andh(x) from the third row. Then
integral~2, 0, 1! becomes@4, 1, 1# integral~0, 2, 1! changes
to @2, 3, 1#, and~0, 0, 3! is now @2, 1, 3#. All three integrals
in this case have the same coefficientsA5a81b11/D, B
5a1b8, andC5c1c8. Integrals of the type@K, L, M# with
known coefficientsA, B, andC can be easily computed usin
the quadrature approach.

TABLE IX. This table is an example of a modification of a
above given table, namely Table I, with the aim of accomodatin
screening factor in one of the given functions. Here,f (x) of Table
I is modified by the factorx exp(2x/D) to represent a new function
f new(x).

z f new(x) g(x) h(x)

1 x3e2@a1a81(1/D)#x e2(b1b8)x e2(c1c8)x

2 x2e2@a1b81(1/D)#x xe2(a81b)x e2(c1c8)x

3 x2e2@a81b1(1/D)#x xe2(a1b8)x e2(c1c8)x

4 xe2@b1b81(1/D)#x x2e2(a1a8)x e2(c1c8)x
TABLE VIII. Different triplet D states withD523106 a.u.

k Sa Sb Sc

E1

~a.u.!
E2

~a.u.!
E3

~a.u.!
E4

~a.u.!
E5

~a.u.!

1 1.0 2.0 3.831 22.055 43
2 1.0 2.0 3.7475 22.055 20 22.029 65
3 1.0 2.0 3.873 22.055 51 22.030 54 22.017 75
4 1.0 2.0 3.9315 22.055 57 22.030 74 22.018 23 22.011 10
5 1.0 2.0 3.68211 22.054 92 22.028 91 22.013 83 22.000 03 21.977 54
8-7
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IX. SUMMARY

Motivated by the importance of two-electron atoms a
ions for plasma diagnostics, our main objective for this stu
was the development of a systematic approach for the us
correlated wave functions. This approach has been succ
fully developed, applied, and described in detail and is
major emphasis of this paper. While the present applicati
comprise the calculation of boundP andD state energies o
the helium atom in a screening environment and are cho
to demonstrate the use of the quantum virial theorem
sum rule in second order, the numerical applications can
extended to include other heliumlike ions as well as the co
putation of other properties such as oscillator strengths
radial one-electron densities@2#. The computation of ener
gies and lifetimes of autoionizing states, done so far only
the pure Coulomb potential@15#, requires the analytic con
tinuation onto the complex plane and has been the main
tivation for the development of the sum rule criteria. T
present studies will be extended into that area in the n
future.

APPENDIX A

The overlap matrix forP states

Sa8b8c8,abc5^a8b8c8uabc& ~A1!

can be divided into four parts

Sa8b8c8,abc5S11S21S31S4 , ~A2!

where

S15E E r 1
2e2~a1a8!r 1e2~b1b8!r 2e2~c1c8!r 12 cos2 u1dr1Wdr2W ,

S256E E r 1r 2e2~a1b8!r 1e2~a81b!r 2e2~c1c8!r 12

3cosu1 cosu2dr1Wdr2W ,

S356E E r 1r 2e2~a81b8!r 1e2~a1b8!r 2e2~c1c8!r 12

3cosu1 cosu2dr1Wdr2W ,

S45E E r 2
2e2~a1a8!r 1e2~b1b8!r 2e2~c1c8!r 12

3cos2 u2dr1Wdr2W . ~A3!

It is easy to show thatS1 and S4 can be represented by a
integral of a typeQ05@0,0,0# with functions

f ~r 1!5e2~a1a8!r 1r 1
2, g~r 2!5e2~b1b8!r 2,

h~r 12!5e2~c1c8!r 12, ~A4a!
01640
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and

f ~r 1!5e2~b1b8!r 1, g~r 2!5e2~a1a8!r 2r 2
2,

h~r 12!5e2~c1c8!r 12, ~A4b!

respectively. IntegralsS2 and S3 are of the type Q1
51/2$(2,0,1)1(0,2,1)2(0,0,3)% with functions

f ~r 1!5e2~a1b8!r 1r 1 , g~r 2!5e2~a81b!r 2r 2 ,

h~r 12!5e2~c1c8!r 12 ~A5a!

and

f ~r 1!5e2~a81b!r 1r 1 , g~r 2!5e2~a1b8!r 2r 2 ,

h~r 12!5e2~c1c8!r 12, ~A5b!

respectively. Thus the simplified form of the overlap mat
is

Sabc,a b c5 (
n51

4

Sn5
8p2

3
@Q0~1!1Q0~4!#

1Spn

8p2

3
@Q1~2!1Q1~3!#, ~A6!

where Spn represents6 for singlet and triplet states an
numbers 1 through 4 represent different choices of functi
in the integrals.

APPENDIX B

One of the authors~P.W.! would like to correct a long-
standing faulty formula: Eq.~25! of Ref. @16# should read as
follows:

Ĥw5S 2
a21b212c2

2
1

a22

r 1
1

b22

r 2
1

2c11

r 12
2ac

r 1

2r 12

2bc
r 2

2r 12
2bc

r 12

2r 2
2ac

r 12

2r 1
1bc

r 1
2

2r 2r 12
1ac

r 2
2

2r 1r 12
D

3e2ar1e2br2e2cr126S 2
a21b212c2

2
1

b22

r 1

1
a22

r 2
1

2c11

r 12
2bc

r 1

2r 12
2ac

r 2

2r 12
2ac

r 12

2r 2

2bc
r 12

2r 1
1ac

r 1
2

2r 2r 12
1bc

r 2
2

2r 1r 12
De2br1e2ar2e2cr12.

~B1!

Herea, b, cstand for the corresponding Greek lettersa, b, g
in the earlier reference. The results of Ref.@16# were ob-
tained using the correct expressions.
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